我们在上文中给大家简单分析了数据科学家需要具备的一些工作品质等内容,而今天我们就再来了解一下,数据分析师的工作内容与能力要求。
数据分析师的工作内容
我理解的数据分析是一个业务支撑性质的工作。数据分析本身是通过分析数据,终解决商业问题。主要是数据收集(埋点),分析数据之间关系(搭建指标体系),日常分析各个数据,反馈到各个业务条线上,来指导业务工作。个别时候还有专项分析某个场景和数据,为业务提供决策支持。
其实日常工作中,找数据、找逻辑,占了大部分。另外一部分工作是“老板要你分析什么,你就分析什么”,其实工作中,很多时候没有太大主动权,不过别纠结,没办法。
简单的说一下分析过程吧。比如B站用户,看直播过程中,右下角会有一个倒计时小宝箱,点击送银瓜子(按F进入坦克)。这个活动要怎么分析呢?比如一个分析角度,有多少人点击宝箱,那我该怎么分析呢?先,我要埋点。埋点就是,每个点击的时候,记录谁在什么时候点击(action)了这个动作,有这些数据,后期才能分析。
接下来,我就要看看每天每个时段有多少人点击这个小宝箱,这个就是简单的数据指标体系的构建。比如,我看到今天投喂辣条的人比较多,我就要看看原因,比如我今天辣条多的原因是,我做了个直播(PS:我想要邮轮~火箭~豪宅要打赏~拉到底下可打赏私聊勾搭作者)。
然后呢,我要通过分析结果,反过来促进我的直播。比如大家打赏非常热烈,那么我每天就会非常开心的上B站直播,形成正循环。至于数据报表的配置搭建这部分,基本学了BI和SQL之后,问题都不大,放心吧。
数据分析师的能力要求
技能、工具是为目的服务的,重要的是工具好用,工具不是目的。我们从数据获取,数据预处理,数据分析,结果呈现等几个方面分别来说明。
数据获取:
SQL技能和埋点(埋点主要是互联网行业),还有excel。大多是情况下,数据来源都是数据库或者数据仓库,个别时候需要爬虫(适合收集学习类工作)。内部数据使用SQL(广义概念,含HiveSQL)是一种简单有效的获取数据的方式。SQL本身入门门槛低,上手快,专业性不是很强。
数据预处理:
以python为例,大部分会用到pandas和sklearn工具包。
数据清洗的环节目标是提高数据质量,为后续的分析工作奠定基础,是高质量数据的后一道屏障。
数据分析:
这一阶段是数据分析工作的核心,先需要从业务场景的理解出发,基于数据,从趋势、分布中总结规律,分析业务现状,提出业务的改进建议。
结果呈现和结果落地:
这部分包括各种人际交往、沟通能力、各种软技能。这里就不好讲解了。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。
(责任编辑:范老师)